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Easy-to-Apply Results ior Establishing
Convergence of Markov Chains in Bayesian
Analysis

IKrishna B. Athreva *

Iowa State University

. +
Fiani Doss 'and Jayaram Sethuraman *

Florida State University

Abstract

The Markov chair simulation method has become a powerful computa-
tional method in Bayesian analysis. The success of this method depends
on the convergence of the Markov chain to its stationary distribution. We
give two carefully stated theorems, whose conditions are easy to verify, that
establish this convergence. We give versions of our conditions which are sim-
pler to verify for the Markov chains that arise most commonly in Bayesian
analysis.

Key words and phrases: Bayesian Poisson regression; calculation of posterior dis-
tributions; ergodic theorem; Markov chain simulation method.

1 Introduction

Let © be a probability distribution on a measurable space (X,5). The Monte
Carlo Markov chain method is a technique for estimating characteristics of 7 such
as 7(F) or [ fdr where £ € B and f is a bounded measurable function, and
which is useful when = is too complex to describe analytically. The idea is very
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!Research supported by Army Research Office Grant DAALO3-90-G-0103




straightforward. We construct a trapsition probability function F{ro-) with the
property that 1t has stationary distribution =, 1.c.

() = /P(;‘r,(;')r(r_/.r) for all e B, (1.1}

Then. we generate a Markov chain { X} with this transition probability function
as follows. We [ix a starting point xg, generate an observation X, from Flag. ).
generate an observation X, {rom PP(X,. ), etc. This produces the Markov chain
o = Xo. X1, X2,.... We use this construction in one of two wavs., Either we
discard an initial segment Xy. Xy, Xoo. 00 X, of the Markov chain, in which the
chain has not vet converged to its stationary distribution, and retain the rest of
the chain, or we independently run a large number of chains and for cach retam
only the last observation. In either case we we use the observations that we have
kept to obtain empirical estimates of those features of = that are of interest.

Implicit in this method is the assumption that the chain converges to its sta-
tionary distribution, for a wide class of starting points zg. Indeed. one can casijv
give examples of Markov chains that do not converge to their stationary disiribu-
tion from any starting point. Thus, to establish the validity of the method. it is
crucial to obtain results that give conditions which imply convergence of the chain.

The Markov chain literature already contains many results that give conditions
under which the Markov chain converges to its stationary distribution for a class
of starting points x¢ which have probability one under = (this conditien is called
ergodicity). Unfortunately, when one comes to apply these results. onc immediarely
notices that in stetistical applications, the conditions of these theorems are virtually
impossible to check.

In our work we have obtained two theorems (Theorems 1 and 2 below) that
assert ergodicity of the chain under conditions that are extremely easy to verify in
a wide range of problems that are likely to arise in Bavesian statistics. These the-
orems pertain, roughly, to the two modes of using the Markov chain construction.
Before explaining our theorems, it is uscful to give an idea of the wide scope of the
problems that can be apprcached via the Monte Carlo Markov chain methed.

There are many ways to produce a transition function satisfving (1.1). Meth-
ods include the Metropolis algorithm and its variants, and the so-called Gibhs
sampler. This last method appears to be the one that is the most widely used
in Bayesian statistics, and we now proceed to describe 1t. This algorithm is

used to estimate the unknown joint distribution # = wy, ym of the {possi-
bly vector-valued) random variables (X, .. . XN by updating the coordinates
one at a time, as follows. We suppose that we know the conditional distribu-
tions 7y x ji), ¢ = L.....por at least that we are able to generate obscrva-
tions from these conditional distributions. If X,, = (X!, ..., X{P) is the current
state, the next state X, 4, = (,\’Sl,,...,‘\’ffl’i] of the Markov chain is formed
as follows. Generate X,(,:il from 7y xo 00 A XY then \,(,,11 from

9




1 - i , :
Fxexo szl \ém)ﬂ S V1)), and so on until \(’ +1 18 generated from
l y— 1 ~ 7y v PN
T x5 \(m+1) ...... \ (1}u+1 . I P s the transittion function that produces

N1 from X, then it is easy Lo see that P satisfics {1.1).

We now give a very briel description of how this method is useful i some
Bayvesian problems. We suppose that the parameter € has some prior distribution,
that we observe a data point Y whose conditional distribution given 03« L{}Y 8.
and that we wish to obtain £(# 1Y), the conditional distribution of & given ¥, It is
often the case that if we consider an (unobservable) auxiliary random variable Z.
then the distribution g z = £{6.Z |)") has the property that 747 (= LY. Z})
and 7wz (= L(Z|1Y.0)) are casy to calculate. Typical exainples are missing and
censored data problems. If we have a conjugate family of prior distributions on
#, then we may take Z to be the missing or the censored observations, so that
747 1s easy to calculate. The Gibbs sampler then gives a random observation with
distribution (approximately) £(0,7]Y), and retaining the first coordinate gives
an observation with distribution (approximately) equal to L(01}').

Another application ariscs when the parameter ¢ is high dimensional. and we
are in a nonconjugate situation. Let us write § = (6y,...,6), so that what we wish
to obtain is 7g, . g,. Direct calculation of the posterior will involve the evaluation
of a k-dimensional integral, which may be difficult to accomplish. On the other
hand, application of the Gibbs sampler involves the generation of one-dimensional
random variables from 74, (s, jxi}. The generation of random variables from a one-
dimensional distribution is in general much easier than from a multidimensional
distribution; very often special tricks can be used. We illustrate this with an ex-
ample in Section 2 below. In addition, we note that the distribution =4 16, 124} 1S
available in closed form, except for a normalizing constant. There exist very cffi-
cient algorithms for generating random variables from such a distribution, provided
the distribution is unimodal; sec Zaman (1992).

2 Illustration of the Markov Chain Simulation
Method: Bayesian Poisson Regression

As a typical application of how the Gibbs sampler helps in high dimensional prob-
lems, we consider a model involving Bayesian Poisson regression. This model is

Yi ~ Poisson(X;), A=, 2;8,, 1=12,...,n,

where the 2;’s are non-negative covariates, and where the prior distribution on
the 3;'s is a product of Gammas. In this case, the likelihood function is

H exp(—

)\Ui




T

= (o) 0\;)( Z).Ju ) (21}};{])%

1=} =1 1= e
and the joint density of the 3,°s is given by

a;

b
31 Ba. . 3) = —J._ g
f[:l(‘l . 1) EI(GJ) J

P P
x  exp ( -3 bJ,[j‘J) 11 ;3;’~1.
=1 1=1

where a; is the shape and b; is the scale parameter for the distribution of 3.
j =1,2,...,p. The posterior joint density of the 4,5, given the data, is theraiore

(31, Pay e, Bp) o\p( iﬁt)HT}_IKH Lxud )

)= =1 3=1

lexp(—-bjﬁj)

where v; = b; + iy zij. 7 = 1,2,...,p. To determine the posterior joint density
of the 3;’s exactly, the constant of proportionality needs to be determined. This
requires high-dimensional integration. However, the Gibbs sampler can be used if
e know the conditional distributions of any B; given the rest of the s and the
data.

To compute the conditional density of any B¢, & = 1,2,....p, given the rest
of the §;’s and the data, we proceed as follow. For each I, 1 <[ < p. let 5 =
{1,2,...,p}\ {I}. Then for each k, the density of B, conditional on all 5;, ; € S,
and the data is the discrete mixture of Gamma densities

n

T3013,.5e8. (B} ox B exp(—uibi) [[ (e + zinBi)*

1=1

where ¢; = T, 7ijB;. Let m = 37, y; and write

m
H(Ca +zaB) =Y mi(k)Bs,
=0
where we explicitly show the dependence of the coefficients on k. Then,

S8, 5e8:(Bk) o0 il (k) By ot exp(—viBi)

and we readily recognize that

foup,ies:(B) = D oK) gagaiw (Br),
{=0

where ¢, ,(2) denotes the gamma density with shape parameter p and scale param-
eter ¢ in z, and p(k) = r(k)(ap + { /v“““ The pi(k)’s are the discrete mixture
probabilities.




3 Convergence Theorems

Before stating our theorems. we will need a few definitions concerning Markov
chains. Let P*(a,-) denote the distribution of X, when the chain is started at
r. Also, for a set ¢ € B.let T(C) = nf{n:n > 0, X, € C} be the lirst tine
the chain hits € after time 0. Finally, for any subset T of the posiuve integers
g.c.d.(T) will denote the greatest common divisor of the mtegers i I,

Theorem 1 Suppose that the Markov chain { X} with transition function Plr ()
has an invariant probability measure =, 1.e. (1.1) holds. Suppose that there is & sct
A € B, a probability mcasure p with p(A) = 1, a constant « > U, anud an integer
ng > 1 such that

A{a s PUT(A) < 00) > 0f = 1, (3.1
and

Pro(a.) > ep(-) for cach € A. 3

Suppose further that

g.c.d.{m > 1: thereis an ¢, > 0 such that sup P™(z,-) > cmp(-)} =1. {3.3)
€A

Then there is a set Dg such that

7(Do) =1 and sup|P"(z,C)==(C)| = 0 for cach x € Dy. (3.4)

Cer

Theorem 2 Suppose that the Markov chain { X,,} with transition function P(r. (")
satisfies conditions (1.1), (3.1) and (3.2). Then
1 no—1
sup [— Y P™t(g,C) — 7:((')\ — 0 as m — oc for [w]-almost all x. {3.5)
CeB'Ng .o

and hence

— 0 as n — oc for [7]-almost all z. (3.6)

1 &
supi; N P (r,C) — 7(C)
=1

cel J=

Let f(z) be a measurable function on (X, B) such that [ =(dy)f(y)| < oc. Then
Pz{i\;f(xj) ——»/r(dy)f(y)} =1 for [z]-almosi all « (3.7)
L =)

and
1

n

Z LX) — /W(dy)./’(y) =1 for [z]-almost all z. (3.3)
=1 ’




Theorem 1 requires condition (3.3), while Theorem 2 does not. Theorem 2
states that if condition (3.3) is violated, one can still apply the Markov cham
stiimulation method, except that one has to work with averages of dependent random
variables instead of running a large number of independent chains and working
with an (approxnmately) independent sample. These two theorems are proved in
Athreya. Doss. and Sethuraman (1992). where it is also shown that these are the
weakest possible conditions that will ensure convergence of a Markov chain for a
set of starting points having probability one under the stationary distribution.

There are already many theorcins that give conditions that guarantee ergod-
icity of Markov chains. See the discussion in Section 1 of Athreva, Doss. aud
Sethuraman (1992). Most of these theorems are stated under two general classes
of conditions. Conditions in the first class involve verification of a “recurrence
condition” which is much stronger than our condition (3.1). Conditions in the scc-
ond class of involve the stationary distribution of the chain. Since this stationary
distribution is unknown, these conditions are difficult to verify. In contrast. our
theorems are stated under conditions that involve only the transition function, and
thus are, in gencral, easier to verify.

Theorems 1 and 2 pertain to arbitrary Markov chains. As we mentioned earlier.
the Gibbs sampler is the most commonly used Markov chain in Bavesian statistics.
We now give a result that facilitates the use of our theorems when the Markov chain
used is the Gibbs sampler. We use the notation of Section 1, and assume that for
cach 7, the conditional distributions my (y(;1,4, have densities. say py ryi
with respect to some dominating nicasure p;.

JF

Theorem 3 Suppose that for each i = 1,....k there is a set A; with p,{A;) > 0.
and a § > 0 such that foreach1=1....,k
Py ixo iz ™) >0 (3.9)
whenever
M e A,,...,2% e A,, and Y 2 are arbitrary,

and
pX.l{X(”j;éi}(‘T(l)‘ coz®) > 6 whenever 219 € A j =1, k.
Then conditions (3.1) and (3.2) are satisfied with ng = 1. Thus, (3.3) is also

satisfied, and the conclusions of Theorems 1 and 2 hold.

We note that condition (3.9) is often checked for all (), ... z(*).
This theorem is immediate for the case & = 2. For the general case the proof
follows by induction.

6
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